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SOME HASH FUNCTIONS BASED ON
QUASIGROUPS

Cernov Vladimir, Shcherbacov Victor, Malyutina Nadegda *

Vladimir Andrunachievici Institute of Mathematics and Computer Sciernce,
Moldova State University, Chisinau, Republic of Moldova

volodya.black@gmail.com, vscerb@gmail.com,
231003.bab.nadezhda@mail.ru

Hashing plays a key role in modern information technologies, providing
efficient storage, retrieval and integrity checking of data. Traditional hashing
methods such as MD5, SHA-1 and their variants, although widely used, face
limitations in the case of large data volumes and increased security requirements.

In recent years, there has been increased interest in alternative hashing
methods based on abstract algebraic structures. Quasigroups and groupoids are
important representatives of these structures with unique properties for hashing
applications.

Definition 1. A function H() that maps an arbitrary length message M to a
fixed length hash value H(M) is a OneWay Hash Function (OWHF), if it satisfies
the following propertities:

1.The description of H() is publicly known and should not require any secret
information for its operation.

2.Given M, it is easy to compute H(M).

3. Given H(M) in the rang of H(), it is hard to find a message M for given
H(M), and given M and H(M), it is hard to find a message My(# M) such that
H(My) = H(M).[1,2].

We give construction of hashing function based on quasigroup.
Definition 2. Let Hy() : Q — Q be projection defined as:

Ho(q192--qn) = ((.(a*xq1) * g2 % ...) *x qn,

Then Hq() is said to be hash function over quasigroup (Q;*). The element
a is a fized element from Q. [1,2]

An algorithm for constructing quasigroups of order n used in the hashing
process has been developed. The set of these quasigroups is written to a separate
file, which will be the key during hashing. To obtain the final hash value, a chain
hashing method was applied, where intermediate hash values are concatenated.
This method ensures the uniqueness of the result and its collision resistance.

*Speaking author : Cernov V.



A hash function "hash function"was developed based on a given quasigroup
and parameter k. The constructed structure demonstrates the possibility of
using this method to create hash values. At the stage of software application
implementation, the "docx to num"function was implemented to convert text
documents into a sequence of bits, which will be presented as an initial message.

The proposed hashing method demonstrates the possibility of effective use
in applications requiring fast and reliable data matching and integrity checking.
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ON TOPOLOGICAL QUASIGROUPS OBEYING
CERTAIN LAWS
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A non-empty set G is said to be a groupoid with respect to a binary operation
denoted by {-}, if for every ordered pair (a,b) of elements of G there is a unique
element ab € G.

A quasigroup is a binary algebraic structure in which one-sided multiplication
is a bijection in that all equations of the form ax = b and ya = b have unique
solutions [1].

A groupoid G is called a primitive groupoid with divisions, if there exist
two binary operation [ : G x G — G, r : G x G — G such that l(a,b) - a =
b,a-r(a,b) = b for all a,b € G. Thus a primitive groupoid with divisions is a
universal algebra with three binary operations.

A primitive groupoid G with divisions is called a quasigroup if the equations
ax = b and ya = b have unique solutions. In a quasigroup G the divisions [, r are
unique. If the multiplication operation in a quasigroup (G, -) with a topology is
continuous, then G is called a semitopoligical quasigroup. If in a semitopological
quasigroup G the divisions [ and r are continuous, then G is called a topological
quasigroup.

A groupoid (G, -) is called medial if it satisfies the law xy - 2t = xz - yt for
all z,y,z,t € G. A groupoid (G,-) is called paramedial if it satisfies the law
xy -zt =ty - zx for all x,y,2,t € G.



A groupoid (G, -) is called bicommutative if it satisfies the law xy- 2t = tz-yx
for all z,y,2,t € G.

A groupoid (G, ") is said to be subtractive, if the following conditions holds:
b-(ba) =a and a-bc = c-ba for all x,y,z,t € G.

A groupoid (G, ") is called AD-groupoid if it satisfies the law a - bec = ¢ - ba
for all a,b,c € G .

A groupoid (G, -) is called a groupoid Abel-Grassmann or AG-groupoid if it
satisfies the left invertive law (ab) - ¢ = (¢b) - a for all a,b,c € G.

While if an AG-groupoid (G, -) satisfying the identity a- (b-c) = b- (a-c) for
all a,b,c € G is called AG**-groupoid.

We define a Ward groupoid as any groupoid (G,-) containing an element
e € G such that a®> =a-a=-e and (ab)-c=a-(c-(e-b)), for all a,b,c € G. A
groupoid (G, -) is called a Schréder Second Law groupoid if it satisfies the law
(ab) - (ba) = a for all a,b € G [6]. The identity (ab) - (ba) = b for all a,b € G is
known as Stein’s Third Law |6]. The concept of (n, m)-identities was introduced
by M.M. Choban and L.L. Chiriac in [2].

Main Results

We study the problems formulated below.

Problem 1. Let G be an AD — groupoid. Under which conditions G with
a locally compact Hausdorff topology can be "transformed"into a topological
quasigroup?

Robert Ellis, in 1957, proved that a group with a locally compact Hausdorff
topology making all translations continuous also has jointly continuous multiplication
and continuous inversion, and is thus a topological group.

We examine a similar problem for quasigroup structure. We extend the
theorem of R.Ellis to the case of AD- groupoids, which satisfies certain conditions.

The mappings 7, : G — G, (x — za) and [, : G — G, (x — ax) are called
respectively the right and left translation by a.

Theorem 1. Let 7 be a locally compact Hausdorff topology defined on an AD —
groupoid (G,-), e € G, and the following conditions hold:

1. xe = x for every x € G,

2.2° =x-x=c¢e for every x € G,

3. if ra = ya then x =y for all x,y,a € G.

Then (G,-,7) is a topological Ward, subtractive and AD-quasigroup with a
(2, 1)-identity e if and only if ro is open and continuous for each a € G.

Quasigroup (G, ) is a T — quasigroup if and only if there exist an abelian
group (G, +), its automorphisms ¢ and 1, and a fixed element a € G such that
x-y=p(x) +1(y)+aforal z,y € G.



Problem 2. Let (Q be a T' — quasigroup. Under which conditions the @) is a
quasigroup (of its T - forms (Q(4), p, 1, a) satisfying the identities P;, where
i=1,2,.. k?

Theorem 2. Let G be a T — quasigroup. Then G is AG — quasigroup if and
only if any for of its T — forms (Q(+), p,v) is ?(z) = ().

Problem 3. Under which conditions the binary topological groupoid with
the algebraic properties P;, P, ..., P, can be "transformed"into a topological
quasigroup with the algebraic properties Py, Ps, ..., P;?
Theorem 3. If (G, ") is an AG and AD-multiplicative topological groupoids and
the following conditions hold:

1.22 =z -2 =2x for every x € G,

2. (zy) - (yx) = x for all z,y € G.

3. if ra = ya then x =y for all x,y,a € G,
then (G,+) is a Schroder, medial, AG and AD-topological quasigroups.
Theorem 4. If (G,-) is an AD-multiplicative topological groupoids and the
following conditions hold:

1. 22 =x2-x =2z for every x € G,

2. (xy) - (yx) =y for all x,y € G.

3. if ra = ya then x =y for all x,y,a € G,
then (G,-) is a Stein and AD-topological quasigroups.
Theorem 5. Let (G, -) be a topological AG**-quasigroup with an (1,2)-identity
e and x? = e for every x € G. If P is an open compact neighborhood such that
e € P, then P contains an open compact AG**-subquasigroup (Q,-) with an
(1,2)-identity of (G, -).

In the context of topological groups an analogous result appears in the work
of Pontrjagin ([7], Theorem 16).

We give a new method of constructing non-associative topological quasigroups
obeying certain laws.

The results established here are related to the work in ([3,4,5]).
Theorem 6. Let (G,+,7) be a commutative topological group where G is not a
singleton. For (x1,y1) and (z2,y2) in G X G define

(xhyl) o (xz,@/2) = (1'1 +y1 — T2, T2 + Y2 — y1)-

Then (G x G,o0,7q), relative to the product topology 1¢, is a paramedial,
non-medial and non-associative topological quasigroup. Moreover, if (G, T) is
T; — space, then (G x G,1¢) is T; — space too, where i = 1,2,3,3.5.
Theorem 7. Let (G,+,7) be a commutative topological group where G is not a
singleton. For (x1,y1) and (x2,y2) in G X G define

($17311> © (552792) = <_-751 — X2,Yy1 + y2)



Then (GXG, o, 1), relative to the product topology 7, is a medial, semimedial,
paramedial, bicommutative, Manin, Cote and GA non-associative topological
quasigroup. Moreover, if (G,T) is T; — space, then (G x G,1q) is T; — space
too, where 1 =1,2,3,3.5.
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CHARACTERIZATION OF QUANDLES WITH
TRIVIAL COLORING INVARIANT
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The problem of knot recognition, where we aim to decide whether two given
knots are equivalent, is one of the central questions in knot theory. Among the
many invariants developed to study knots, coloring invariants using quandles
form one notable approach.

A quandle is an algebraic structure ) with a binary operation x, satisfying
the following axioms for all a,b,c € Q:

e a*xa=a,
e for every a,b € (), there exists a unique x € () such that axx = b,

o ax(bxc)=(axb)x(axc).



These axioms mirror the behavior of knot diagrams under Reidemeister
mowves, the local transformations that describe when two diagrams represent
the same knot. Each knot can be represented by a two-dimensional diagram
with crossing information preserved. Reidemeister moves describe how we can
deform such diagrams without changing the knot itself.

To each knot K, we assign a fundamental quandle QQ(K), which is a quandle
generated freely by the arcs of the diagram, subject to relations determined by
the crossings. The fundamental quandle is a complete invariant: two knots have
isomorphic fundamental quandles if and only if they are equivalent (see [1]).
However, fundamental quandles are difficult to compute directly. To make this
more tractable, we consider colorings: homomorphisms from Q(K) to a fixed
finite quandle Q). The number of such colorings is denoted by Colg(K).

Some colorings, however, carry no meaningful informations®for instance,
trivial colorings, where all arcs are mapped to the same element of (). In the
following theorem, we characterize the finite quandles that admit only trivial
colorings for every knot:

Theorem 1. Let Q) be a finite quandle. The following are equivalent:

1. For all knots K, we have Colg(K) = |Q),
2. Q 1s reductive,

3. Colg(K) is a Vassiliev invariant.

Before explaining the proof, we define reductive quandles. A quandle @ is
called reductive if every connected subquandle of ) has size 1. A quandle is
connected if the group of inner automorphisms, generated by left translations,
acts transitively on (). Fundamental quandles are connected, and this property
is preserved under quandle homomorphisms [1].

To prove the equivalence of (1) and (2), we showed that for every finite
connected quandle () of size greater than 1, there exists a knot K such that
Colg(K) > |Q|. This construction adapts ideas from the group-theoretic setting
discussed in [2]. We then applied the characterization of reductive quandles from
[3], which completes the equivalence (1) < (2).

For the implication (2) < (3), we followed the argument in [4]. A key lemma
states that if a Vassiliev invariant is bounded in terms of the braid index, then
it must be constant on all knots. Since Colg(K) is constant if and only if all
colorings are trivial, we conclude that Colg(K) is a Vassiliev invariant if and
only if @) is reductive.

The results presented in this abstract are part of author’s bachelor’s thesis
[5], where the full proofs, additional examples, and broader context of the
problem are provided. A preprint is currently being prepared.
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ON RECURSIVE DIFFERENTIABILITY OF
QUASIGROUPS PROLONGATIONS

Cuznetov Elena, Syrbu Parascovia *
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lenkacuznetova95@gmail.com, parascovia.syrbu@gmail.com

The recursive derivative of order k of a quasigroup (@, -), denoted by (]?),

where k is a natural number, is defined as follows:
y=ga-y, xy=y (z-y),
tty=@"y) @y,
for all £ > 2. A quasigroup (Q,-) is called recursively r -differentiable if its
recursive derivatives (k) are quasigroup operations, for all k =1,... 7.

It is known that there exist recursively 1-differentiable binary quasigroups
of any order ¢ # 2,6 and possibly ¢ # 14, 18,26 [4,6]. Also, it is known that the
maximum order of recursive differentiability of a binary quasigroup of order ¢
does not exeed ¢ — 2 [5].

A prolongation of a finite quasigroup is a process of extending the quasigroup
by adding one or more new elements and redefining the operation to create a
new quasigroup of a larger order. The notion of prolongation was introduced by
Belousov in 1967, although the construction of quasigroups prolongations was
first studied by Bruck in 1944, who considered finite idempotent quasigroups
for this purpose [1-3]. Later, some other methods of quasigroups prolongations
have been proposed.

Belousov’s method of prolongation is based on complete mappings: a com-
plete mapping of a quasigroup (@Q,-) is a bijection x — 6(x) of @ upon Q,
such that the mapping 61, where = - 0(z) = 601(x), is a bijection as well. The

*Speaking author: Cuznetov E.



characterization of all quasigroups, in particular groups, which possess a comple-
te mapping remains at present an open question [3]. In finite case, the complete
mappings of quasigroups define transversals of the corresponding Cayley tables.
A transversal of a latin square of order q is a set of q cells, taken by one from
each row and each column, such that the elements in these cells are pairwise
different.

The recursive differentiability of quasigroups is studied in the present work.
We consider methods of prolongation of recursively differentiable quasigroups
that keep this property. Necessary and sufficient conditions when a prolongation
of a recursively differentiable quasigroup is recursively differentiable are given,
including for well known prolongation methods by Bruck and Belousov.

A new method of quasigroups prolongation is proposed, using two transver-
sals that intersect in exactly one cell. The total number of such prolongations
and their recursive differentiability is studied for quasigroups of small order.
Regarding the proposed method of prolongation it is shown that:

1. The total number of latin squares of order 5, having 2 transversals which
intersect exactly in one cell, one of which is on the main diagonal, with a fixed
order of elements, is 240;

2. There does not exist recursively 1-differentiable prolongations of quasigroups
of order 5, obtained using the main diagonal with the fixed order {2,3,4,5,1}
or {1,2,3,4,5}, and an arbitrary second transversal which intersect the main
diagonal exactly in one cell.

Acknowledgments. The Institutional Research Program of the Moldova
State University for 2024 — 2027 years, subprograms 011302 "MANSDP"and
011303 "SATGET has supported part of the research for this paper.
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AN ALTERNATIVE APPROACH TO FINITE SIMPLE
MOUFANG LOOPS

Drapal Ales
Charles University, Prague, Czech Republic
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Finite simple Moufang loops were classified by Liebeck, using earlier results
of Doro. The proof relies on classification of finite simple groups and on the
concept of groups with triality. Functorial connections between Moufang loops
and groups with triality have been influential ever since, culminating in the
monograph of Jonothan Hall.

These connections are certainly important and deep. Nevertheless, it seems
that it is possible to get many important results by much simpler means,
avoiding the formalism of groups with triality. I will report several fresh results
in this category.

In these results the triality concept is present only in the rudimentary form of
the outer automorphisms of G = MIt(Q), @ a simple finite Moufang loop. I will
explain how to prove that G has to be simple and has to possess a split group
D of outer automorphisms isomorphic to S3, and how to construct from such a
simple group a Moufang loop in a direct way. The classification then follows by
proving that different realizations of D induce isotopic (and thus isomorphic)
simple Moufang groups. The outer automorphisms in question are the involutory
isomorphisms (1) R, — L;1, (2) R, — L,R, and (3) L, — L,R, that were
known already to Glauberman.

The dependence on the CFSG remains since we need to know all finite simple
groups that possess a split group of outer automorphisms isomorphic to Ss.

Finite simple Moufang loops arise from Zorn algebras Zrn(F), F' a field. If
time allows, I will mention new characterizations of these algebras and certain
new results on Aut(Zrn(F)) = Gy(F).
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ON TOTALLY PARASTROPHIC-ORTHOGONAL
TERNARY QUASIGROUPS

Fryz Iryna
Vasyl’ Stus Donetsk National University, Ukraine

iryna.fryzQukr.net

Quasigroup algebras possessing the orthogonality property are associated
with other discrete structures and applicable in algebra, combinatorics, crypto-
graphy, coding theory etc. For example, there is an important connection bet-
ween sets of mutually orthogonal operations or quasigroups (resp. hypercubes)
and maximum distance separable codes [1]. Increasing the number of orthogonal
operations in such sets allows one to maximize the Hamming distance, thereby
improving the capability for error detection and correction.

A triplet of ternary quasigroups defined on the same set is called orthogonal
if each possible triplet of the elements of the carrier set occurs exactly once
when the corresponding Latin cubes are superimposed; strongly orthogonal if
the triplet is orthogonal and all corresponding subcubes (Latin squares) are
orthogonal. A set of ternary quasigroups are orthogonal if each triplet of this
set, is orthogonal.

For every permutation o from the symmetric group Sy, a o-parastrophe °f
of an invertible ternary operation f is defined by

F(T10, T20, T30) = Tao <= f(x1,T2,23) = 24.

A ternary quasigroup is called asymmetric if all its parastrophes are pairwise
different; totally self-orthogonal if its all different principal parastrophes are
orthogonal; totally-parastrophic orthogonal or, more briefly, a top quasigroup if
all different parastrophes are orthogonal.

A ternary groupoid is called a group isotope if it is isotopic to a ternary
quasigroup derived from a group. Each group isotope (Q; f) for every element
0 € @ has a O-canonical decomposition (4, a1, s, a3, a) (“canonical” means
always exists and unique), i.e.

f(x1,22,23) = 121 + 22 + a3xs + a,

for some group (Q;+,0), permutations a1, as, az with a;0 = as0 = a30 and
a € Q; (Q;+,0) is called 0-canonical decomposition group [2].

Let B(H) denote the class of all quasigroups whose parastrophic symmetry
group includes the subgroup H of the group S;. Note that B(H) is a variety
and parastrophic symmetry groups of parastrophic quasigroups are conjugated
[3]. The symmetric group S4 has 11 pairwise unconjugated subgroups. The

12



corresponding list of parastrophic symmetry groups one can find in [3] and
[4]. For example, the following subgroups of S are unconjugated:

Ca=1{1,(12),(34),(12)(34)}, Ka={:,(12)(34), (13)(24), (14)(23)},

Z4 = {1, (12)(34), (1423), (1324)}.

A quasigroup possessing the corresponding parastrophic symmetry group has
6 pairwise different parastrophes. These classes are studied in [4], in particular
canonical decompositions of ternary group isotopes belonging to these varieties
are stated. The corresponding statements are given below.

Theorem 1. [4] A ternary group isotope (Q; f) belongs to P(Cy) if and
only if there exists an abelian group (Q,+,0), its permutation o and an element
a € Q such that a0 =0 and

f(x1,29,23) = axy + axy — T3 + a. (1)

Theorem 2. [4] A ternary group isotope (Q; f) belongs to P(Ky) if and only
if there exists a group (Q,+,0), its involuting automorphisms o and 5 and an
element a € @) such that aa = fa = —a, fa = I,ab and

f(x1, o, x3) = —fax; + axs + Bx3 + a. (2)

Theorem 3. [4] A ternary group isotope (Q; f) belongs to P(Z4) if and only
if there exists an abelian group (Q,+,0), its automorphism a and an element
a € Q such that a* =1, a®a = —a and

f(xy, 20, 23) = axy + ’xy — a’z3 + a. (3)

The necessary and sufficient conditions for a medial ternary asymmetric
quasigroup to be a (strongly) totally self-orthogonal are given in [5], to be a top
quasigroup are submitted for publication in a join work with F. Sokhatsky.

Here, we continue the study of group isotopes which have parastrophic
symmetry groups Cy4, Ky, Z4. In the series of statements given below, the
necessary and sufficient conditions for a group isotope with parastrophic sym-
metry groups Cy4, Ky, Z4 to be a top quasigroup are stated.

Theorem 4. A ternary group isotope (Q; f) defined by (1) with the group
of parastrophic symmetry Cy4 is

1) self-orthogonal if and only if « + 1 and 2a — v are permutations of Q;

2) strongly self-orthogonal if and only if o+, 2a—t and a—1 are permutations
of Q;

3) a top-quasigroup if and only if a4+, 2a— 1, a — 1, a— 21 are permutations

of Q;
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4) not a strongly top-quasigroup.

Example 1. Let Z,,, be a ring of integers modulo m. By Theorem 1, (Zy,; f)
with

is a quasigroup which belongs to B (Cy) if and only if m is relatively prime to 7.
By Theorem 4, it is a top quasigroup if and only if m is relatively prime to 2,
3,5, 7, 13.

Theorem 5. A ternary central quasigroup (Q; f) defined by (2) with the
group of parastrophic symmetry Ky is

1) a top-quasigroup if and only if it is self-orthogonal;

2) a top-quasigroup if and only if

a+t, B+, a—p, a+p—PLa+3

are automorphisms of (Q;+);

3) mot a strongly top-quasigroup.

Theorem 6. A ternary group isotope (Q; f) defined by (8) with the group
of parastrophic symmetry Z4 is

1) a top-quasigroup if and only if it is self-orthogonal;
2) a top-quasigroup if and only if a + ¢, o — ¢ are automorphisms of (Q;+);
3) mot a strongly top-quasigroup.

Example 2. Let Z13 be a ring of integers modulo 13. By Theorem 8, (Z13; f)
with o = 5 and
flx,y,2) =52+ 8y + 2

is a quasigroup which belongs to W (Z4). By Theorem 6, it is a top quasigroup.
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(o, B, v)-quasigroups, or («a, 3,7)-inverse quasigroups (as they are commonly
referred to in the literature), generalize various types of inverse property quasi-
groups and loops. In particular, they generalize CI-, WIP-, m-inverse, and
(r, s,t)-inverse loops. In this work, we examine certain isotopic properties of
(a, B, v)-quasigroups and explore their potential cryptographic applications.

PROPERTIES OF AC-GROUPOIDS

Izbas Vladimir, Izbas Ana-Maria *

! Moldova State University, Chisinau, Republic of Moldova
2 University of Groningen, The Netherlands

vladimir.izbas@math.md, anamaria.izbas@gmail.com

In [3] we introduce the concepts of right (left) AC'—groupoids over an arbitrary
group, generelizing the concept of groupoid "automorphic by the cyclic group" of
A. Sade |2]. Necessary and sufficient conditions are found in [3] which transform
aright (left) AC'—groupoid into a quasigroup (either idempotent or commutative
one). This is a continuation of the research from [3]. Some other properties of
right (left) AC'—groupoids are investigated. We find the conditions when the
(right, left) AC-groupoid has a one-sided unit. We also construct all finite
idempotent commutative (right, left) AC-groupoids defined on an arbitrary
group of any odd order.

A groupoid (Q, *) is called right AC-groupoid (respectively left AC-groupoid),
if a group (Q,+) exists so that the right translations R} : Ri(z) = z + a
(respectively left translations L} : LT (x) = a+x) of the group are automorphisms
of the groupoid , i.e.

(zxy)+a=R](x*xy) =R (z)* R (z) = (v +a) * (y + a) (1)
(respectively,
a+(zxy)=Ly(r*y)=Ly(z)* Ly () = (a+z)* (a+y)), (2)

*Speaking author: llemobade R.
*Speaking author: Izbas V.
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whatever a,z,y € Q.
The structure of (right, left) AC-groupoids is given by the following statements.
The right AC-groupoid (Q,*) is determined by the function f : Q —
@, g(x) = 0z and the group (Q, +) with the neutral element 0, by the formula
zxy= f(r—y)+yforany x,y € Q . We will denote this groupoid by (Q, *y)
or (@, *f, 0) [3]

The left AC-groupoid (Q, *) is determined by the mapping g : Q — Q, f(z) =
x %0 and the group (@, +) with the neutral element 0, by zxy =z + g(—z +y)
for any z,y € @ . We will denote this groupoid by (Q,4 *) or (Q,4 *,+,0)[3].

So
rxpy=flx—y)+y (3)
rgxy =2+ g(—x +y) (4)
for any z,y € Q.

If (Q,+) is a group that satisfies the identity 2z = 0 and |@Q| > 2, then the
right (left) AC'—groupoid (@, *¢,+,0) ((Q,4 *,+,0) ) is not commutative. From
this statement it follows that the commutativity of the group does not ensure
the commutativity of the right AC'—groupoid (Q, *s,+,0) (respectively the left

AC—groupoid ( (Q,q*,+,0))).

Theorem 1. Let (Q,*5,+,0) ((Q,g%,+,0)) be a right (left) AC-groupoid
defined over the group (Q,+). Then:

1. (Q,*¢,+,0) is a groupoid with a right unit if and only if the mapping
f(x) =z *0 that determines it is the identical mapping f(x) =z . In this
case Txpy =x,2,y € Q (the semigroup of right units).

2. (Q,*f,+,0) is a groupoid with a left unit if and only if the mapping f(x) =
xx0 that determines it is the null function f(x) =0 . In this case xx sy =
y,x,y € Q (the semigroup of left units).

3. (Q,g*,+,0)) is a groupoid with a right unit if and only if the mapping
g(x) = 0% x that determines it is the null mapping g(x) =0 . In this case
rgxy=1x,2,y € Q (the semigroup of right units).

4. (Q,g%,+,0)) is a groupoid with a left unit if and only if the mapping
g(z) = 0 x that determines it is the identical mapping f(x) = x . In this
case Ty xy =y, x,y € Q (the semigroup of left units).

5. (Q,x¢,+,0) ((Q,g%,+,0)) is a groupoid with unit if and only if |Q] = 1.
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We also study commutative and idempotent ( right, left) AC'—groupoids
defined over a group .

Theorem 2. For any system of elements oy, as.as, ..., oy, 10 the finite group
(Q,+) of order |Q| = 2m + 1 there exists a unique function f : Q — Q that
satisfies properties f(0) =0, f(z;) = 4,1 € {1,2,3,...,m} and f(—z) = f(x) —
x,Vr € Q.

Theorem 3. There are (4m + 2)"™m! right AC'—groupoids ( respectively left
AC—groupoids ), commutative and idempotent defined over a group of order
2m + 1.

Remark that in Theorem 3 some of the pairs of constructed groupoids may
be isotopic, or even isomorphic.

Acknowledgments. The Institutional Research Program of the Moldova
State University for 2024 — 2027 years, subprograms 011303 "SATGET has
supported part of the research for this paper.
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CLASSIFICATION OF IDENTITIES OF
CIP-QUASIGROUPS UP TO PARASTROPHIC
SYMMETRY

Krainichuk Halyna

Vinnytsia National Technical University, Vinnytsia, Ukraine

kraynichukQukr.net

A quasigroup (invertible) operation is a function defined on a finite or infinite
set if it is invertible in each of its variables. By definition [1], a quasigroup is
a set () with the operation (-) defined on it if, for arbitrary a, b, the equation
a-xr =b,y-a=>bhas a unique solution. Such a quasigroup is called a binary
quasigroup.
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For the classification of quasigroup identities, it is more convenient to use
.. . . . 14 .
another definition of a quasigroup [2]. A quasigroup is an algebra (Q;-; -; T) with
the identities

(@-y)y=xz, (@ y)y==2 z'(x-y) =y, x-(x'y) =y

Here the operation (-) is called the main, the operations (?)7 (*) are the left and

right divisions of the operation (-). These operations are also called the left and

right inverse of the operation (-), since they are the inverses of the operation (-)

in the semigroup (Os, ?) and (Os, @), respectively, where Oy denotes the set of
™

all binary operations defined on the set () and the following equalities hold

(f?@@w%zﬂﬂ&@w% U@gfzﬂaﬂaw)

An algebra (Q; ; 4; T-‘) is called a loop, if it has a neutral element e: ex = ze =

[1].
For study, a quasigroup is best viewed as an algebra with all its parastrophes

. . b4 l sr . . .
in the signature: (Q; -, -, LIVR ), shorthand (Q); -), where (+) is the main operation.

If we replace the main operation () with its o-parastrophe (°), we obtain
o bo ro so so sro

the algebra (Q;-, -, -, -, -, - ), which is called the o-parastrophe of this
quasigroup. Since (J) is the main operation, the shorthand for the o-parastrophe

is (Q;°).

Let (Q;0) be a quasigroup and P be a statement defined in (Q;o). The
Parastrophic orbit Po(P) and the parastrophic symmetry set Ps®(P) of the
statement P are defined by the equalities:

Po(P) :={°P | o € S3}, Ps®(P) := {0 | P is true in (Q;0)}.

The identity 7 (w = v) is called o-parastrophic to the identity w = v, if it is
obtained with w = v by replacing the main operation with its o~ !-parastrophe.
The identity holds in the quasigroup (Q;-) if and only if the o~ !-parastrophe
of this identity holds in the o-parastrophe of this quasigroup.

Intuitively, this definition was used by V. D. Belousov [3|, when describing
parastrophic identities of minimal length. The idea of transforming parastrophic
identities appeared in A. Sade [4], his method was used by Sh. K. Stein [5] and
he obtained some parastrophic identities for one parastrophic orbit of varieties.
V. D. Belousov systematized the results known at that time and the methods
of their investigation in the work [6]. Further parastrophic identities of minimal
length were classified by the author in the work [7]. With the advent of the full
definition of C'I P-quasigroups [8], the task of specifying the full classification
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of C'I P-quasigroup identities up to parastrophic symmetry arose. The initial
results of this study are described in [9, 10].

Preliminaries

A quasigroup (Q;-) is called [8]:
1) — a middle MCIP quasigroup, if there exists a transformation « such that
a(z) - yr = y;
2) — a left LCIP quasigroup, if there exists a transformation [ such that

yr -y = B(x)

3) — a right RCIP quasigroup, if there exists a transformation  such that

y - xy = (),

where a, 3, v are called the mean, left, and right invertibility functions, respectively.
The bijections L, R,, M, of the quasigroup (Q;-) are called left, right, and

middle translations, if

Ly(x) :=a-x,

From here,

T

LY (z)=a- R;l(x):xga, Ma_l(sc):agx.

a

In [9] it was established that each equality of two sets of translations of
different directions defines exactly one class of quasigroups. Namely, the parastrophic
orbit of (middle, left, right) C'I P-quasigroups is defined by the following translation
equalities:

M="M | L' =Ry | afz)-yz=y | CIP ¢ =°C
"M ="M | R;'= Ly MCIP

‘M="M | R;' = Mg, | zy-x=p8(y) | LCIP | ‘c="¢
M ="M Mx_l = ng(x)

M =M Ly=My, | z-yr=7(y) | RCIP | "¢="C
M=M | M;' =L,

In [10], defining identities were found, namely, each variety of the parastrophic
orbit C'IP of quasigroups can be described by the following identities:

Variety Defining Defining
formula identity
C=°¢ |a@) yr=y |ay (zz-2)=y
te=s7¢ | yz-y=8(x) | yr-y=z2x-2
re=5%¢ | y-ay=v(z) | y-ay=2z2- 22

For each variety of parastrophic orbit C'IP of quasigroups, the invertibility

function has the form of dependencies between translations:
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C=5¢: (Vz) a=M. R, ="M.,"M;
fe=5"¢: (Vz) B=R.L,="M."M;
r¢=%¢: (Vz2) y=L.R, ="M,"M,.

The defining identities in these manifolds have length three, i.e. three different
subject variables.

The research problem in these abstracts is to find minimal identities that
define CIP-quasigroups. To do this, we first find dependencies between the
invertibility functions.

Main results

According to the presented general identities in the definitions of CIP-
quasigroups, the general form of o-parastrophic identities is given in the following
table.

o MCIP LCIP RCIP
L a(r) -y =y yx -y = B(x) y-xy =y(z)
a(r)y-x=y
E zy - a(z) =y y - xy = *B(x) yr -y = y(x)
- (y-‘o(z) =y
Bz)-yz=y Y(xy) -z =
( yx -y = ‘o(z) By -z=y y-(x) - y) ==
y-(a(z)-y)=z | (y-"Bx)) y=x zy-"y(x) =y
r ‘a(zy) v =y z-"Byr) =y r-(y-"(x) =y
(y-"a(x)-y=az |y -CB@)-y) =z | *H) yr=y
st | x-a(yr) == Blry) - z=y | 9@ -y z=y
zy-"B(z) =y r -y (yr) =y

o) Ja-(y-BE) =y | (y-(x)-y=2

In one cell, the identities are equivalent, i.e., they define the same class of
quasigroups; in different cells of one column, the identities are o-parastrophically
equivalent, i.e., they define parastrophic classes of quasigroups. The following
theorem follows from this table.

Theorem 1. Invertibility functions of CIP-quasigroups have the following
dependencies between them: ‘o = 8 = %%, “a = 8 = ™y, ‘o = B = %,
ra:sfﬁzﬁ,y sﬁa:rﬁzsr,y STOZZSBZL’}/

) 7 *
It was also established by V.D. Belousov that the formulas

ST y-xy =

vy o) =y, z-ya(r)=y, oalr)yr=y, a@y-z=y (1)

are equivalent in the quasigroup (Q; ). However, for this purpose, no conditions
for the reversibility functions were defined. Taking into account the results of
Theorem 1, we have the following refined statement.
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Proposition 1. The identities (1) are equivalent in the quasigroup (Q;-)
provided, if

‘a(z) = "a(r) = Blx) = "Bx) = "y(z) = "(z) = 2”.

Each of these identities describes the class of all middle MCIP-quasigroups
with the invertibility function x2.

Let S3 be act on a set of K. If k£ is an element of the set K such that %k =k
and k does not match any element of Po(k), then the element k is one-sided
symmetrical.

Taking into account the translation transformations and the dependence
between the invertibility functions from Theorem 1, we obtain the following

minimal identities for all varieties of C'I P-quasigroups.

o(x)\%(z) | ‘o(z) =%o(z) =22 | ‘o(z) = so(z) = x ‘e o(z) = So(z) = x - @
MCIP a(x) 2 yr=y (:vga:)-y:v:y (ZBTZE)'y:B:y
2 4 r
iy - =y, (z-2)y- -z =y, (z-2)y-z=y
2 £ T
ry- a2 =y zy-(z-z)=y zy (- x)=y
2 _ oy T —
Tyt =y r-ylz - x)=y z-y(z-z)=y
V4 r
(y - yr)z == r(ry - y) ==
LCIP B(x) yr -y = 2 (yx-y)x ==z z(yx-y) ==z
V4 r
yz? oy =z yx-z)-y==x y(x - x) y==1
l
z-(yz)? =y y-(zy - ay) =y y (zy zy) =y
RCIP ~v(x) Y-y = x° (y-zy)z == z(y-zy) ==
V4 r
y-aty=ux y-(z - z)y==z y-(z-z)y==
£
(xzy)? z=y (zy - zy)z =y (zy " ay) z=y

Each cell of this table has equivalent formulas that define the same variety
of quasigroups with the corresponding invertibility function.

Proposition 2. The identities yx - y = 5(x), x - Byx) =y, (y -
B(x)) -y = x are equivalent in the quasigroup (Q;-) provided, if

B(z) ="B(z) = ‘a(z) = “a(z) = *(z) = "y(z) = 2.

FEach of these formulas describes a variety of left LCIP quasigroups with the

invertibility function 2, or more precisely, a class of semisymmetric idempotent
quasigroups.

Proposition 3. The identities (1) y - zy = v(x), v(zy) - x =y, Yy -
(v(z) - y) = = are equivalent in the quasigroup (Q;-) provided, if

Y(z) = (x) = "a(z) = Ta(z) = B(z) = *Bz) = 2.



Each of these formulas describes a variety of right RCIP quasigroups with the
invertibility function x2, or more precisely, a class of semi-symmetric idempotent
quasigroups.
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LOGICAL SCHEMES OF SOME ASYMMETRIC
QUASIGROUPS FOR LW-CRYPTOGRAPHY

Krainichuk Halyna, lvanova Liudmyla*
Vinnytsia National Technical University, Vinnytsia, Ukraine

kraynichuk@ukr.net, milaivanova2609@gmail.com

To implement quasigroups in hardware for lightweight cryptography, such
minimized logical formulas are needed so that the hardware complexity is the
smallest. The main purpose is to find logical schemes of asymmetric quasigroups
and calculate their hardware complexity for use in low-resource cryptography.
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[ S JJooJor 1o 11 || % Jloo o1 |10 11 |["f]O0]oO1]10]T11|
00 JJor [11 [10[o00 ][00 10 o1 [11]00][00] 11 ]00] 10 |01
0L |10 oo [ o1 [ 11 [[or]foo |1t [oL |10 |[ 01 ] 01]10]00]11
10 [JooJ1o 1t Jor|[10ffor[10[o00 11| [10] 00110110
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[sfJJooJor 1011 ][ [Joo]or]|10]| 11 |["f]00]o01L]10]11 |
00 JorJ10]o00 11 ][00 1000 [or[11 |[ 00 [ 11 01 00 |10
0L JJ11 Joo [ 10 o1 |[or [Jor[11[10]o00 |[ 0L [[oo] 10 11 | 01
10 [[10]or |11 ][00 |[ 10 [[11 ] 01 ] 00| 10 10 [ 10 Joo o1 |11
11 oo 1t o1 [10][ 11 [Joo [ 10|11 |01 11 [[o1 [ 11 ] 10 [ 00

Let (Z3; f) be an asymmetric [1] quasigroup [2], where Z2 := {00;01; 10; 11}.
All parastrophes left ‘f, right "f and dual to them *f, ‘f, *"f are found:

Using the Quine-McCluskey method [3], the following logical formulas were
obtained for each parastrophe of the quasigroup: °L = 21 V 25, where 21 := 21y,
29 1= xoys and o := {1; {;1; s; 805 sr}.

L=22® (1 ®y2) V1@ (22D y1); L=21 @ (22D y2) V1D (Y1 D Y2):

L=018(@2®y2)Ve1® (1 Sy2); L=22® (1 ®y2) Va1 ® (22 By1);

L=21D(@2@y2) V1 © (Y1 S y2); "L =220 (Y1 Dy2) V21O (12 D y1)-

Taking into account the values of logical structural elements from [4],
the Latin squares complexity for hardware is

L =°L="'L="%L=1134GE, "L =L = 12.01 GE,

where (@) denotes XOR and the value GE (Gate Equivalent) denotes a unit
of measurement that determines the manufacturing complexity of a technology
regardless of the complexity of the digital electronic circuits.
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PRE-AFFINE NETS AND LOOP TRANSVERSALS

Kuznetsov Eugene
Moldova State University, Chisinau, Republic of Moldova
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This study began with the work [1] of V.D. Belousov, in which one class of
finite algebraic nets was studied (when the genus of the net coincides with its
order). All necessary definitions can be found in the works [3, 2.

Definition 1. A set (P, L,I) of objects of 2 types (P - points and L - lines)
with an incidence relation I is called a net (algebraic net) if the following
conditions are satisfied:

1. The set L can be separated into disjoint classes Ly, Lo, ..., L.
2. Two lines from different classes are incident to exactly one point.

3. Fach point X € P s incident to exactly one line from each class L; .

The number k is called the genus of the net N, and the net N is then called
a k-net. It is known [2] that each line L contains the same number n of points,
and the number of lines in each class L; is also equal to n . The number n is
called the order of the net.

The inequality £ < n+1 always holds for k-nets. If £ = n+1, then such k-net
is called an affine plane. It is natural to consider the case k = n. V.D. Belousov
called such k-nets as pre-affine nets in work [1]. He proved the following theorem

Theorem 1. Let (P, L,I) be a pre-affine net. Then it can always be embedded
(as a subnet) into some affine plane of the same order.

It is known (see [2]) that any k-net (P, L, I') of order n is in 1-1 corresponden-
ce with a system (F, E, As, ..., Ay) of k orthogonal binary operations of order n
(where F, E are left and right selectors, and As, ..., Ay are quasigroups). Then
(see [2]) we obtain the corollary

Corollary 2. Any system of (n — 2) pairwise orthogonal quasigroups of order
n can always be supplemented (by adding of some quasigroup) to a complete
system of (n — 1) pairwise orthogonal quasigroups.

The last statement was proved in [2] by non-constructive enumerating me-
thod. Therefore arose the question of finding an explicit method for constructing
this additional quasigroup.

Let us remember the basic facts from the theory of the finite affine planes
and its coordinatization (see [6]).
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Definition 2. [6] A system (E,(x,t,y),0,1) is called a DK-ternar (i.e. a set
E with ternary operation (z,t,y) and distinguished elements 0,1 € FE), if the
following conditions hold:

if a,b,c,d are arbitrary elements from E and a # b, then the system

[ =

has an unique solution in £ X E.

Definition 3. A set M of permutations on a set X is called sharply 2-
transitive if for any two pairs (a,b) and (c,d) of different elements from X
there exists an unique permutation o € M satisfying the following conditions:

Lemma 3. [6] Let ™ be an arbitrary finite projective plane. We can introduce
on the plane m the coordinates (a,b), (m), (co) for points and [a,b], [m], [co] for
lines (where the set E is a finite set with the distinguished elements 0,1 and
a,b,m € F) such that if we define a ternary operation (x,t,y) on the set E by
the formula

(z,t,y) =2 Lol (z,y) € [t, 2],
then the system (E,(x,t,y),0,1) be a DK -ternar.

Now let a system (F,(x,t,y),0,1) be a DK-ternar. Let us define the
following binary operation (z, 00, y) on the set E:

def

(z,00,0) = =,
(r,00,y) =u def (z,t,y) # (u,t,0)
{ (z,y) # (u,0) = vVt € E.

Lemma 4. [6] Operation (x,00,y) satisfies the following conditions:

(QS,OO,y) = (U7OO7U) (ﬂf,t, y) 7£ (u7 t?”)
L { (z,y) # (u,v) = Vte FE.
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2. (z,00,z) = 0.

3. if a, b, c are arbitrary elements from E, then the system

{ (x,a,y) =b

(z,00,y) =c¢

has a unique solution in E X E.

Let (E, (z,t,y),0,1) be a finite DK-ternar. Let us introduce points (a, b) and
lines [a, b], [m] (where a,b,m € F) and define the following incidence relation I
between points and lines:

(a,b) I [c,d] <= (a,c,b)=d, (1)
(a,b) I [d <= (a,00,b) =d,

Lemma 5. [6] The incidence system (X, L, I), where

X ={(a,b) | a,b € E},
L = {[a,b],[m] | a,b,m € E},
I is the incidence relation, defined above in (1),

18 an affine plane.

Lemma 6. [6] (Cell permutations) Let the system (E, (x,t,y),0,1) be a finite
DK -ternar. Let a,b be an arbitrary elements from E and a # b. Then every
unary operation g (t) = (a,t,b) is a permutation on the set E.

Lemma 7. [6] Cell permutations {aaptapecE, azp Of the finite DK-ternar
(B, (x,t,y),0,1) satisfy the following conditions:

1. All cell permutations are distinct;

2. The set M of all cell permutations is sharply 2-transitive on the set E;

3. A permutation o is a fized-point-free cell permutation on the set E iff
the following condition holds

(a,00,b) = (0,00, 1).
4. There exists the fized-point-free permutation vy on the set E such that we

can represent the set A of all fized-point-free cell permutations together
with the identity cell permutation o 1 in the following form:

A= {aa7b|b:1/0(a), CLGE} = {aa,yo(a)}aEE-
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Lemma 8. [6] Let M = {aqp}abeE, axb be a set of permutations on the set
E (E is a finite set with distinguished elements 0 and 1), and the following
conditions hold:

1. ap,1 = id.
2. agp(0) =a, agp(1) =0.

3. The set M is a sharply 2-transitive set of permutations on E.
Let us suppose by definition:

def .
(x7 ta y) = O‘&:,y (t) Zf x # y7
d

(z,t,x) <l .

Then the system (E,(x,t,y),0,1) is a finite DK -ternar.

Next theorem show a connection between a finite sharply 2-transitive sets of
permutations and loop transversals in the symmetric group .5,,.

Theorem 9. [5] Let E be a finite set and card M = n. Then the following
conditions are equivalent:

1. A setT of permutations of degree n is a sharply 2-transitive set of permu-
tations on the set E and id € T'.

2. A setT of permutations of degree n is a loop transversal in S, to Stq ,(Sy)
(where a,b are arbitrary fixed elements from E and a # b).

T
3. A system (E X E — {A},(-), (a,b)) is a sharply 2-transitive permutation
loop of degree n (a definition of permutation loop see in [8]).

Lemma 10. [6] Let T, = {0y y}zycE, z2y be a loop transversal in S, to
Stap(Sn) (where a,b are arbitrary fived elements from E and a # b). Let a

Ta, . .
system (E'x E — {A},( . b), (a,b)) be a loop transversal operation corresponding

to the transversal T, . Then

T 0, 0) = {0y (1), 0y (0). @)

As it is shown above, there exist a 1-1 correspondences between

(z,y)

e a finite projective plane 7 of order n;

e a finite DK-ternar (E, (x,t,y),0,1) which gives a coordinatization of the
projective plane T;
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e asharply 2-transitive permutation loop L = {q b }a,beE, axb Of cell permu-
tations of the DK-ternar (F, (z,t,y),0,1);

e a loop transversal T, = {Qzy}aoycE, 2y i the symmetric group S, to
Sta.b(Sn) (where a, b are arbitrary fixed elements from E and a # b);
. (Ta,b) .
e a loop transversal operation (F x E — {A}, -7, {(a,b)) corresponding

to the transversal T, ; (in [6] this loop is called a loop of pairs of the
DK-ternar (F,(x,t,y),0,1)).

Below for simplicity we shall consider that (a,b) = (0, 1).

Lemma 11. A set
Hy ={(0,a)|a € E —{0}}
To,1
forms a subloop in the loop of pairs L* = (E X E — {A},( B ), (a,b)).

Let us study a set A = {0y () }acre C L of all fixed-point-free permutations
and the identity permutation (see Lemma 8).

Lemma 12. A set A = {Qqu(a)}acE 5 a loop transversal in the loop L =
{aabtabeE, azb to its proper subloop H.

Lemma 13. There exists an unique left loop transversal in the loop L =
{aaptapeE, azp to its subloop Hy.

Corollary 14. There exist exactly n—2 different non-reduced left loop transver-
sals in the loop L to its subloop H.

Remark 1. It can be note a correlation between the left loop transversal A in
the loop L to its subloop Hy and the points of the line [(0, 00, 1)] in the projective
plane m:

Qpuz) €A & (z,v(x)) €[(0,00,1)].

There exists an analogical correlation between the non-reduced left loop transver-
sals in the loop L to its subloop Hy and the points of the lines [d] (d # 0) in the
projective plane m:

Qg s) €Te & (x,0(x)) € [(0,00,¢)], c#0,1.

A
Corollary 15. A following condition is fulfilled for the loop (E,(-),()) and
permutation v: for every x € E
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ISOTOPY, ISOSTROPHY, AND GYSOTOPY IN THE
THEORY OF QUASIGROUPS

Malyutina Nadegda, Shcherbacov Victor, Chernov Vladimir *
Shevchenko Transnistria State University, Tiraspol, Moldova State University,
Chisinau, Republic of Moldova
231003.bab.nadezhda@mail .ru, vscerb@gmail.com,
volodya.black@gmail.com

Modern research in cryptography requires the development of algebraic con-
structions with complex symmetry and a high degree of internal structure sec-
recy. One of such directions is the application of quasigroups and their transfor-
mations — isotopies, isostrophies and gisotopies — in the design of cryptographi-
cally robust algorithms.

*Speaking author : Malyutina N.
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The structure of isostrophy and gisotopy classes of given groupoids and
quasigroups has been investigated. An algorithmic approach to the construction
and analysis of various forms of isotopic, isostrophic and gisotopic images of
algebraic structures oriented to cryptographic applications has been implemen-
ted.

Gisotopy (or generalized isotopy) is a more extensive concept than isotopy,
and allows the construction of new algebraic objects that may not satisfy stan-
dard properties and axioms.

Definition 1. A groupoid (Q, A) is a gisotope (a gisotopic image) of a kind «
of a groupoid (@, B),where « € {l,r},if there exists an m-tuple of permutations
P of the set @ of the kind « such that T4 = T4, ie., (t4) = (t%):p; for all
suitable values of the index i, where 1'%, T'% are m-tuples of maps of the kind
a that correspond to the groupoids (Q, A), (@, B), respectively [1].

Theorem 1. If (Q, A) is a left quasigroup and T is an isotopy, then there
exists a gisotopy GT of the kind [ such that (Q,A)T = (Q,A)GT , i.e. any
isotopy of a left quasigroup is a gisotopy.

Gisotopy is a transformation which preserves the property of orthogonality
of squares, groupoids and m-tuples of maps [1].

The following program modules in Python language were developed: prog-
rams for construction of isotopic and isostrophic image for a given groupoid or
quasi-group, programs for construction of gisotopic images of types [,1l,r,Ir for
a given quasigroup or groupoid. The developed programs allow both theoretical
analysis and modeling of the application of these structures in cryptographic
algorithms.

We consider the application of isostrophy and generalized isotopy in the El-
Gamal scheme based on the Markovski algorithm [2]. Isostrophy and isotopy can
be useful in coding theory, cryptography, and other fields that work with various
algebraic systems that have similar or equivalent mathematical properties.
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A STUDY OF EXTRA POLYLOOP AND ITS
ALGEBRAIC PROPERTIES
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In this study, we investigate a special class of non-associative algebraic
hyperstructures- extra polyloop, and explore their fundamental algebraic proper-
ties . Unlike traditional and classical non-associative algebraic structure
extra loop, where the binary operation satisfies any of the extra identities

(xy - 2)x =2(y - 2x), yr-zx = (y-x2)z, vy - xz = x(yz - 2),

non-associative algebraic hyperstructures exhibit more diverse and complex
behaviours. We focus on a key class of non-associative algebraic hyperstructure
- extra polyloops, and analyze their structural algebraic properties, identities,
and substructures. Furthermore, we examine conditions under which certain
non-associative algebraic hyperstructures admit wweak associativity or power
associativity. The interplay between non-associativity and other algebraic pro-
perties , such as flexibility, left alternative property, and right alternative pro-
perty is explored.
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BOL MOUFANG RINGS AND THINGS, YET AGAIN

Phillips John D.
Northern Michigan University, USA
E-mail: phillips.jdl@gmail.com

We give some new structural results about loops of Bol Moufang type, and
move on to connections with Lie Rings.

ON LCA GROUPS WHOSE CLOSED
CO-POLYTHETIC SUBGROUPS HAVE
COMMUTATIVE RING OF CONTINUOUS
ENDOMORPHISMS

Popa Valeriu
Moldova State University, Chigindu, Republic of Moldova

valeriu.popa@math.md

Let £ be the class of locally compact abelian groups. For X € L, we let
E(X) denote the ring of continuous endomorphisms of X, k(X) the subgroup
of compact elements of X, t(X) the torsion subgroup of X, and Sp(X) the set
of prime numbers p with the property that ¢,(X), the p-primary component of
X, is non-zero. For any prime p, we set X[p] = {x € X | px = 0} and denote
by Z(p) the cyclic group of order p, taken with the discrete topology. Also, we
denote by T the group of reals modulo one with its usual compact topology.

Definition 1. A group X € £ is said to be co-polythetic in case there exists
a continuous injective homomorphism from X into a group of the form T" for
some n € N.

Theorem 1. Let X be a group in £ with ¢(X) # {0}. If every closed co-
polythetic subgroup of X has commutative ring of continuous endomorphisms,
then k(X) = X and X|[p] = Z(p) for all p € Sp(X).

Theorem 2. If X is a torsionfree group in £ all of whose nonzero discrete
subgroups are of rank one, then every closed co-polythetic subgroup of X has
commutative ring of continuous endomorphisms.

Theorem 3. For a group X € L, the following statements are equivalent:

(i) Every closed co-polythetic subgroup of X has commutative ring of conti-
nuous endomorphisms.

(ii) X satisfies one of the following conditions:
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(1) X is torsionfree and every its nonzero discrete subgroup is of rank

one.

(2) X = AxY, where A = T and Y is a torsionfree group in £ with
kE(Y)=Y.

(3) X contains no copies of T, k(X) = X, and X[p] = Z(p) for all
p € So(X).

ON 4-QUASIGROUPS WITH EXACTLY FIVE
DISTINCT PARASTROPHES

Rotari Tatiana, Syrbu Parascovia *
Moldova State University, Chisinau, Republic of Moldova

tatiana.rotari@usarb.md, parascovia.syrbu@gmail.com

An n-groupoid (@, A) is called an n-quasigroup if each of the elements
x1,T2,...,Tnt1 in the equality A(zy1,x2,...,%,) = Ty is uniquely determined
by the remaining n. The operation 7 A, defined by the equivalence

A(CEl, Z2,. .. 71'?1) = Tn41 < UA((xU(l)ny@)) cee 71'0'(71)) = Lo(n+1)s

where o € S,,11, is called a parastrophe of (Q, A).

The set H = {0 € S,4+1|7A = A}, where (Q, A) is an n-quasigroup,is a
subgroup of S,1. Moreover, if 7 € S,,.1 then A = 7A if and only if 8 € Hr.
Hence, the number of distinct parastrophes of an n-quasigroup devides (n+ 1)!.
Remark that every set of representatives of {H7|T € S,41} is a maximum set
of distinct parastrophes of (@, A).

C.C. Lindner and D. Steadly shown in [1] that finite binary quasigroups with
a prescribed number of distinct parastrofes exist of every order ¢ > 4, suggesting
that this problem can be extended to n-ary quasigroups. The problem was
completely solved in the ternary case, for 1, 3,4, 6, 12 and 24 distinct parastrophes
by M. McLeish [2]. The spectrum of ternary quasigroups with exactly 2 or 8
distinct parastrophes is only partly described.

n-Quasigroups with orthogonal maximum sets of £ > n distinct parastrophes
are called totally parastrophic-orthogonal quasigroups. We study the maximum
sets of distinct parastrophes of a 4-ary quasigroup, the spectrum of finite 4-ary
quasigroups with a given maximum number of distinct parastrophes and the
spectrum of totally parastrophic-orthogonal 4-quasigroups.

*Speaking author: Rotari T.
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Theorem 1. A 4-ary quasigroup (Q, A), which is linear over an abelian
group (Q,+), has exactly five distinct parastrophes if and only if there exist
an automorphism o € Aut(Q,+) and an element ¢ € QQ such that the operation
A(zx1,x2,x3,24) has one of the following forms: a(z1)+a(z2)+a(xs)+a(zy)+c,
a(x)+1(z2)+1(xs)+1(za)+c, I(z1)+a(xe)+1(x3)+1(xs)+c, I(x1)+1(x2)+
a(xs) + I(xg) +c, I(x1) + I(x2) + I(x3) + a(x4) 4 ¢, where I(x) = —z,Vx € Q.

Theorem 2. A 4-quasigroup, linear over an abelian group (Q,+), with
exactly five distinct parastrophes, is totally parastrophic-orthogonal if and only
if there exist o € Aut(Q,+) such that 3a+ I and (o + )3 are bijections.

Corollary. There exist totally parastrophic-orthogonal linear 4-ary quasigroups
with exactly five distinct parastrophes of every odd order q > 3.
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ON SCHWEITZER QUAZIGROUPS

Diduric Natalia, Malyutina Nadegda, Shcherbacov Victor *
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Definition 1. A quasigroup (Q,-) is called a Schweitzer quasigroup, if in
(Q, ) the following identity is true: yz - yzr = xz.

Theorem 1. There exist Schweitzer quasigroups (K, -) which:

1. are isotopic to an abelian group and have a right identity element,

2. are Moufang quasigroups, i.e. (x(y-zz)) = (z - yfz)x - 2,

3. are Abel-Grassman quasigroups, i.e. (z -yz = z - yx),

4. are right transitive quasigroups, i.e. (zy - zy = z2),

5. are medial quasigroups, i.e. (zy - uv = zu - yv),

6. have a non-empty distributant.

Examples of Schweitzer quasigroups.

*Speaking author: Shcherbacov V. A.
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10 1 2 3 4 5 6 7 8
o0 2 1 4 3 6 o5 8 7
111 0 2 5 8 3 7 6 4
212 1 0 7 6 8 4 3 5
3/3 6 8 0 4 7 1 5 2
414 7 5 3 0 2 8 1 6
o195 4 7 8 1 0 6 2 3
6/6 8 3 2 7 5 0 4 1
7|7 5 4 6 2 1 3 0 8
818 3 6 1 5 4 2 7 0
*10 1 2 3 4 5 6 7 8 9
oo 1 3 2 5 4 8 9 6 7
1{1 0 4 5 2 3 9 8 7 6
212 5 0 6 7 1 3 4 8 9
3/3 4 8 01 9 6 7 2 5
414 3 9 1 0 8 7 6 5 2
5|9 2 1 7 6 0 4 3 9 8
6|6 7 2 8 9 5 0 1 3 4
7|17 6 5 9 8 2 1 0 4 3
818 9 6 3 4 7 2 5 0 1
919 8 7 4 3 6 o5 2 1 0
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ALGEBRAIC NETS AND QUANTUM QUASIGROUPS

Smith Jonathan D.H.
Towa State University, Ames, Towa, U.S.A.
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A 3-net or 3-web is a set W of points which decomposes in three ways
W=2HxV=2VxD=2DxH (1)

as a product of pencils H,V,D of lines respectively described as horizontal,
vertical, and diagonal [1], [4,p.88]. These lines are respectively dotted, dashed,
and solid in the example illustrated below, based on a triangulation of the torus.
Here, the ordered pair (z,y) labelling a point is exhibited simply as zy.

Quasigroups coordinatize and are determined by webs, to within isotopy.
The coordinatizing quasigroup in the example is subtraction of integers modulo
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4. Web geometry was first motivated by the now obsolete topic of nomography.
Contemporary applications include the Wigner function phase space approach
to quantum mechanics, and the role of curvature in general relativity. The
problem of quantizing web geometry emerges as a potentially important part of
the general problem of appropriately quantizing spacetime. Quasigroup theory
provides an approach to this problem.

A quasigroup (Q, ) is semisymmetric if (x-y)oy = z, where zoy =y -x
denotes the opposite of the original multiplication. The semisymmetrization of
a quasigroup (@, -, /,\) is defined by the semisymmetric multiplication

(z1,22,73) - (Y1,Y2,¥3) = (5B2\y3,$3/yl,$1 ° y2) (2)

on Q3 [4]. A homotopy (f,g,h): (Q,-) — (P,*) between quasigroups, so with
xf xy9 = (x-y)" for all z,y in Q, semisymmetrizes to a homomorphism

Q> = P?;(2,y,2) — (af,y9,2") (3)

between their semisymmetrizations. In particular, isotopic quasigroups have
isomorphic semisymmetrizations. Web geometry clarifies the role of isotopy:
The respective bijections f,g,h of an isotopy (f,g,h) permute the labels of
the vertical, horizontal, and diagonal lines of the web coordinatized by the
domain and codomain of the isotopy. Conversely, the semisymmetrization of
a quasigroup encodes the web geometry that it coordinatizes. Quantizing quasi-
groups to quantum quasigroups [3,6,7], the problem of quantizing web geometry
reduces to the problem of semisymmetrizing quantum quasigroups [8].
Quantum quasigroups are structures appearing in a symmetric monoidal
category (V,®,1), which is like a commutative Monoid* on the class Vg of
objects, with tensor product ® and unit 1, where the categorical relation of
natural isomorphism replaces the set-theoretical notion of algebraic identity.
Thus, commutativity appears as an involutive natural isomorphism 74 g or

T:A®B >BRA xRy =y (4)

described as the swap in quantum information theory. Quantum quasigroups
include (classical) quasigroups in the category (Set, x, T) (with a singleton T as
unit), quantum groups in the category (g, X, C) of complex vector spaces (the
usual setting for quantum mechanics) with the 1-dimensional space as unit,
and linear quasigroups in the linear category (§ ,@,{0}) of modules over a
commutative, unital ring S, with the direct sum @ as product and the trivial
module {0} as unit. Generically, an elementary notation = ® y is used to track
an object A® B, as in (4) — compare [3]. In particular, the tensor notation x ®y
provides a very convenient notation for an ordered pair (z,y) € A x B.

*Following the convention of capitalizing algebraic structures on potentially proper classes.
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A quantum quasigroup (A,V,A) has a multiplication V: A® A — A and a
comultiplication A: A — A® A;x — @y which are mutually homomorphic.
Its left composite is

G:ARASZE A A A A A (5)

and its right composite is

DA AN A A0 A YRS A A, (6)

both are required to be invertible. As a quantum quasigroup in (Set, x,T), a
classical quasigroup (@, -, /,\) has diagonal comultiplication a — a ® a and left
composite a ® b — a ® a - b, inverted by ¢ ® d — ¢ ® c\d [6, Prop. 3.11].

The tightest version of a quantum quasigroup is a quantum T-quasigroup
(Q,Vi,A¢)icz/,, which consists of three quantum quasigroups indexed by the
additive group of residues modulo 3, such that the composite diagrams

A@A&A@A (7)

i+1

commute in V for each ¢ € Z/3 |7, (3.3)]. Thus, 7G;;17 is identified as the
inverse of the right composite o;, while 70; 17 is identified as the inverse of the
left composite G;. For example, a classical quasigroup (@,-,/,\) determines a
quantum T-quasigroup in (Set, x, T), with respective multiplications

Vi QRQ = Qiz®@y—xoy, (8)
Vi:Q®Q = Qiry—z\y, (9)
Vi Q®Q = Qirx@y—x/y (10)

and the diagonal comultiplication A; for each ¢ € Z/35. Note the use of the
opposite quasigroup multiplication for the index 0 or 3.

A quantum T-quasigroup (Q, Vi, A;j)icz/, in (g, ®,{0 }) is said to be linear.
In matrix form, the multiplications

ViQeQ- @il oo fe o) |f) (1)

and comultiplications
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are given by automorphisms \;, p;, L;, R; of ). Their mutual homomorphism
amounts to the mutual commutativity of the two subalgebras S(\;, p;) and
S(L;, R;) within the endomorphism ring S(Q,Q) of @ [6, Prop. 3.39]. The
commutativity of the diagrams (7) is equivaﬁent to the equations

R =1L, RiRiy1pit1 = —LiXidit, (13)

7

Pt = iy, Riv1piv1pi = —LiyaLid; (14)

for each i € Z/3 |7, Lemma 4.2].

Theorem 1. |7, Th. 4.7] For an S-module Q, linear quantum T-quasigroup
structures on Q) are equivalent to a set { Ry, R1, Ra, po, p1,p2 } generating a
subgroup B of the automorphism group é(Q, Q)* of Q such that:

1. The subset { Ry, R1, Ro } commutes with the subset { po, p1, p2 };
2. There is a central element ) in the group B such that the equations
Q= Ri1RiRit1 = (—p; 1) (=p; ) (=pji1) (15)
hold for each i,j € Z/3.

In the context of Theorem 1, a classical linear quasigroup (i.e., with diagonal
comultiplications) has Q = Ry = Ry = Rs = 1g. Writing elements of A = Q?
as row matrices a = [al as ag], the classical semisymmetrization (2) may be
expressed in the form (a @ b)V = aP + bA with matrices

0 0 P3 0 )\2 0
P = P1 0 0 and A= 0 0 )\3 . (16)
0 P2 0 )\1 0 0

The first matrix, sometimes described as the Rho-matriz in this setting, is read
as (capital) “rho.” By (14), AP = 14. As an initial step in the quantization
of web geometry, we ask which linear quantum quasigroup structures provide
comultiplications to extend this semisymmetrization multiplication V.

It is convenient to introduce a circulant notation

o, o
Cla, B,7) == | p1vp3 molzpf /)2_15/?3 , (17)
B P3 VP2 P3 OpP3

in which «, 8, are endomorphisms of the S-module (). Such a matrix is said
to be monomial if two of these endomorphisms are zero.

Theorem 2. [8, Th. 3.13] The comultiplication
A:A— Ad A;la] — [a] [L L7 (18)
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extends V if and only if L = C(«, 8,7) is invertible.

The classical semisymmetrization corresponds to L = 14 = C(1g,0¢,09).
Now, a quantum quasigroup is said to be quantum semisymmetric if the diagram

A A—2>Ax A (19)

commutes [2, Def’n. 4.11]. In Theorem 2, this means that L3 = —P3 = Q1.

Theorem 3. [8, Th. 4.1] Monomial quantum semisymmetric extensions are

L=C(Q 130,00 =071%1,, (20)
L =C(0,—p5'Q*%,0), (21)
L=0C(0,0,—Cp3). (22)

Here, the S-automorphism ¢ of Q with (3 = 1¢g commutes with py1, p2, and ps.

If the linear quasigroup structure comes from real or complex affine geometry,
Bezout’s Theorem from algebraic geometry yields a complete classification of
the quantum semisymmetric extensions [8, Th. 5.11]. There are 27 such in the
complex case. In the real case, there are only the 3 monomial comultiplications
from Theorem 3.
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QUASIGROUPS AND LOOPS UP TO ORDER 5

Sokhatsky Fedir

Pidstryhach Institute for Applied Problems of Mechanics and Mathematics of
NASU, Ukraine

fmsokhaQukr.net

“The counting of Latin squares has a long history, but the published accounts
contain many errors. Euler in 1782, and Cayley in 1890, both knew the number
of reduced Latin squares up to order five. In 1915, MacMahon approached the
problem in a different way, but initially obtained the wrong value for order
five.” [1]

Unfortunately, the author does not know of an analytical proof of the number
of quasigroups to order 5.

Knowing the number of quasigroups of a certain order is too little information
for their study and application. It is necessary to have formulas for their defini-
tion, and it is desirable that this formula be canonical, that is, for an arbitrary
quasigroup of a certain class such a formula must exist and be unique. Thus,
one of the main problems is the following

“To find canonical formulas determining all quasigroups of a certain class.”

Here, we give canonical formulas for each quasigroup up to order five. The
number of quasigroups is obtained as a corollary.

Notation: Z,, :={0,1,2,...,m—1}; S, is the symmetric group of order m,
i.e. a set of all permutations of Z,,; S,,_; = {a € Sy, | a(0) = 0}; Z,, :=
(Zm;+,0) is additive group modulo m. Cross-section of a partition 7 of a set is
the set of all representatives from each element of 7.
Theorem 1. Let (Q;*) be a quasigroup and 0 be an element of the set Q.
Then
xxy = a(x)o B(y) with «(0) =0, Ooz=z00=x (1)

18 a canonical decomposition of the quasigroup.

In other words for each quasigroups defined on @) and for each element 0 € @,
there exists a unique triplet (o, a, 5) with (1).

Corollary. The number of quasigroups of order m is equal to

m!-(m—1)!
DU

where £ is the set of all 0-loops of order m.
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Group isotopes

Theorem 2. Let w be the set of all quasigroups isotopic to a group G :=
(Zm;*,0) and T be a cross-section of S!,_,/AutG. Then

zxy=~(a " (z)x B (y))

is a canonical decomposition of (Z,;*) Ew, ifa € S, 1 and vy € T.
Corollary 1. Let G := (Q;+,0) be a group of the order m. Then there are
exactly
m!- ((m—1))°
| AutG|

different isotopes of the group G.
For example, there are exactly

71-(6)2 5040 - (720)?

= = 435456 000
6 6

group isotopes of order 7.

Semisymmetric anticommutative (SA) loops

o || 0 | 1 | ) | 3 | 4 | Semisymmetricity:

0f[o|L1]2]3]4 °(yor) =y, equiv. (voy)ow =y,
101]0[3[4]2 equiv. o =0 =0, equiv.0 = 0 = © )
2)2]4]0]1)3 Anticommutativity:

3131214 (0]1 xoy:yox:(m:(}\/y:(}\/x:y)’

4 4f3f1]{2]0 therefore o # o.

Theorem 3. If («, 8,7) is an isotopism of SA loops, then o = 5 = v. Fach
autotopism of an SA loop is its automorphism.
Lemma 4. Let L := (Z,,;0,0) be an SA loop. Then

1. each loop isotopic to L is isomorphic to a loop (Z,; Ab, aob), where
a
v 8 yi=(box)o(yoa); (3)
a

2. the operations A and ’Ab’ are isomorphic if and only if there exists an

automorphism 9 of the SA loop such that o’ = 60(a) and b/ = 6(b).
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Roughly speaking, isomorphy relation on the operation set {Ab | a,b € Q}
a

coincides with the action of the group Aut(Z,,;o,0) on the set @ x Q.
Theorem 5. Let an SA loop (Z,,;0,0) be generated by any two different

nonzero elements. Then each loop isotopic to (Z,,;0,0) is isomorphic to exactly

one of the loops: (Z,,;0,0), (Zm;OAl, 1), (Zm; 1A0’ 1), (Zn; 1Al,0), (Zm; 1Az’ 102),

where

e ayi=(lox)o(yol):  zay:=(0ox)o(yol)
01 10 (4)
T A =(lox)o(yol); $1A2y:(2ox)o(yol)

Theorem 6. Let s« be the isotopy class containing an SA loop L := (Z,,;0,0)
and I1 be a cross-section of S), _,/AutL. Then

flx,y) =~ (z) o 7 (1)) (5)

is a canonical decomposition of (Zp,; f) € s, if v € 1L

Quasigroups of small orders

Quasigroups on Z; := {0,1}. There are only two quasigroups on Z; —
addition modulo 2 (exclusive disjunction) and the logical equivalency. The addi-
tion is a 0-loop and it is a group. The canonical decomposition of these quasi-
groups 1is

rxy=1x+ Py, B e Ss.

Quasigroups on Z3 := {0,1,2}. There is only one 0-loop on Z35 — addition
modulo 3. The canonical decomposition of these quasigroups is

x*xy = tx+ By, B e Ss.

Therefore, there are 12 quasigroups on three-element set.

Quasigroups on 7, :={0,1,2,3}. Each quasigroup is isotopic to either the
cyclic group Z4 or Klein four-group Zy x Zs [1,2,3].

Corollary 2. Fach isotope of cyclic group Z4 coincides with exactly one of
the quasigroups (Zy; f) with

fl@y) =~ (z)+ 87 (),
where o € S5, B € Sy, v €{t,(12),(13)}.
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Corollary 3. Fach isotope of Klein four-group Zo X Zo coincides with exactly
one of the quasigroup (Z3;g) with

g(z,y) = o '(z) & B (),

where a € S5, B € 4.

Consequently, the number of quasigroups isotopic to Z,4 equals 3-6-24 = 432,
quasigroups isotopic to Klein four-group Zs X Zs is 6 - 24 = 144. Thus, there are
432 + 144 = 576 quasigroups of order 4.

Theorem 7. 3] Every quasigroup operation f on the carrier set
Z3 ={00,01,10,11} is uniquely defined by one of the following formulaes:

f(z,y) =tA®yB ®a; (1)
f(@,9) = (@A +yB +a)C; (2)

where (®), (+) are additive groups of the rings Zo x Zo and Z4, a € Z2, A, B €
U, C €V, where

(DG D0 D)
(DG DL DG

Note that + is addition modulo 4, but & denotes component-wise addition
modulo 2.

Quasigroups on 75 := {0,1,2,3,5}. It is well-known [1, 2| that the set
of all quasigroups of order 5 is divided into two isotopy classes. Therefore,
each quasigroup of order 5 is isotopic to either the group Zs or an arbitrary
nonassociative loop, say to SA loop L := (Zs5;0,0) defined by (2). Nevertheless,
we have proved

Theorem 8. Every quasigroup of order 5 is isotopic to either the group Zs
or SA loop (2).

Theorem 9. The automorphism group of SA loop (Z5;0,0) (2) is the alter-
nating subgroup A of Sy: namely,

Aut(Zs;0,0) ={bap | a#b, a,b=1,2,3,4} = A,

s (012 3 4
@w-=\0 a b aob boa |-

Corollary 4. Each loop isotopic to SA loop (2) is isomorphic to exactly one

of the loops (Z5;0,0), (Zs; £.1), (Zs; 8.1), (Zs: 4,0), (Zs; &,3) defined by (4).
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Corollary 5. Fach quasigroup isotopic to SA loop (2) coincides with exactly
one of the quasigroups (5), where o, 5 € S5 and

v e {1, (01), (02), (03), (04), (12), (012), (021), (03)(12), (04)(12)}.
Consequently, the number of quasigroups isotopic to SA loop (2) equals
(5!)% - 10 = 144 000.

Corollary 6. Fvery quasigroup isotopic to Zs coincides with exactly one
quasigroup (Zs; f), where

flzy) =~ (z)+ B y)),

a €Sy, B€Ss and v € {1, (12),(13), (14), (23), (24) }.
Consequently, the number of group isotopes of the order 5 equals 24-120-6 =
17 280. Therefore, the number of all quasigroups of order 5 is

144000 4 17280 = 161 280.
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FORMULAS FOR DETERMINING SOME
QUASIGROUPS OF THE ORDER 8

Sokhatsky Fedir, Buniak Bohdan *
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NASU, Ukraine
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This is a continuation of the research from [1]. A semisymmetric anticommu-
tative loop (Q;o0,0) is called SA loop.

*Speaking author: Buniak B.
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Theorem 1. Every SA loop of order 8 is isomorphic to (Zg;o,0), where
Zg :={0,1,...,7} and

of[0]1]2]3[4[5]6]|7]

0011234 ]5]6]|7 Semisymmetricity:

L1103 ]4]5[6]7]2 ro(yox)=1y is equivalent to
2121710116354 (woy)ox:y
332501746 (1)
all2a13l7l6l0ol11 215 Anticommutativity:
51514627013 Toy=yoxr=
61615473201 = (@=0vVy=0ve=y)
TINT7T16]1]5]12(14(3]0

Theorem 2. Fach automorphism of the SA loop (Zs;0,0) equals

g (012 3 4 5 6 7
0= a b Ly oo B oe 5w )

where L,(b) :=aob, a,b € Zg and so the automorphism group has 42 elements.
Theorem 3. Each loop isotopic to (Zs;0,0) is isomorphic to exactly one of
the following loops: (Zs;©,0), (Zs; A1), (Zsi 5,1), (Zss 1,0), (Zs; 4,3), where

zby:=(lox)o(yo0); zAy:=(0oz)o(yol);
zAy:=(lox)o(yol); rhy:=(20z)0(yol)

Theorem 4. Each quasigroup isotopic to (Zg;0,0) coincides with exvactly
one of the following

flz,y) =~v(a (@) o B (),

where v belongs to a cross-section of SL/AutL, S7 is the set of all permutations
0 of Zg such that 6(0) =0 and «, B are permutations of Zs.
Corollary. There are 195 084 288 000 quasigroups isotopic to (Zg;o,0).
Theorem 5. Let w be the set of all quasigroups isotopic to a group G =
(Zs;+,0) and T be a cross-section of S§/AutG (S§ = {a | a(0) = 0}), then

zxy=7(a"(z)+ 87 (y)) (2)

is a canonical decomposition of *, if «(0) = y(0) = 0 and v € T. There are
five groups of the order 8 and so there are

2 (1 2 1 1 2 23
8- (7! -+ -4+ —=4+—] =8 (7)" - — = 560867 328 000.
( ) (4+8+24+168> ( ) 42
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different isotopes of order 8. Thus, we found formulas for 560867 328 000 +
195084 288 000 = 755951 616 000 quasigroups of the order 8.
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SUPERNILPOTENT LOOPS: INTRODUCTION
Stanovsky David

Charles University, Prague, Czechia
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The classical approach to nilpotence of algebraic structures is recursive:
define the center, then a central series, and let the class of nilpotence be the
length of a shortest central series. In groups, the center consists of all elements
that commute with everything. In loops, the center consists of all elements that
commute and associate with everything.

In 1970s, universal algebraists found a suitable syntactic condition to define
the center of any algebra. However, many characteristic properties of nilpotent
groups do not carry over to this more general setting. Perhaps most important
among such properties is the fact that there are finite nilpotent algebras, loops
in particular, which do not admit a direct decomposition into p-primary compo-
nents. This issue was addressed relatively recently in a novel way [1] that is
based on another fundamental property: the limited essential arity of absorbing
polynomial operations. An algebra is called k-supernilpotent if all absorbing
polynomials of arity bigger than k are constant.

For groups, k-supernilpotence coincides with k-nilpotence. Under mild uni-
versal algebraic assumptions (which cover groups and loops), supernilpotence
implies nilpotence and a finite algebra is supernilpotent if and only if it is a
direct product of nilpotent algebras of prime power order. Therefore, in loops,
supernilpotence is a stricly stronger property.

In the present talk, based on the paper [2] with Zaneta Semaniginova, I will
introduce the abstract concept of supernilpotence, I will show how it applies
in loops, and relate it to existing concepts, namely, central nilpotence and
nilpotence of the multiplication group.

References:
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ON THE EXISTENCE AND UNIQUENESS OF ONE
INVERSION MATRIX OF AN n-IP LOOPS

Ursu Leonid
Tehnical Uniwversity of Moldova, Chisinau, Republic of Moldova

It is known that an n-IP quasigroup has more than one inversion matrix
[1]. The existence and uniqueness of the inversion matrix [I1, j] is proved, the
inversion substitutions of which keep invariant the loop unit. This matrix, as in
the binary case, allows one to study n-IP loops more easily and deeply.

A quasigroup Q(A) of arity n (n > 2) is called an n-IP-quasigroup if there
exist permutations v;;;4,j € i, of the set @ such that the following identities
hold

Avigey 21, AR vigegi_y ) = @i, jeLn (1)

for any =] € Q™, where v;; = v;11; = € (the identity permutation of the set Q)

[1]-

The substitutions v;; are called inversion substitutions, and

£ V12 V13 e Vip €
| V21 £ V23 ... Von €

Vij =
Uni UVUn2 UVnpg ... 3 £

is the inversion matrix, the i-th row (i € 1,n) of this matrix is sB<sB<called
the i-th inversion system.

A quasigroup B is called an isotope of a quasigroup A (A and B have the
same arity n and are defined on the same set @) if there exists a sequence
T = (a}*!) of permutations of the set @ such that B(z7) = a1 Aoz},
V 27 € Q™ and is denoted by B = AT [1].

If B = A, then by the definition of the n-quasigroup, in the equality

Alay) =y (2)

every n elements uniquely determine the (n + 1)-th element.

Let us fix a number i (i € 1,n). Therefore, xﬁ_l,xnﬂ, x| uniquely deter-
mines the element x;. We obtain a new operation that defines the correspondence
{zi7", mpp1, 27, } — 7. We denote this operation by ™ A. Thus we have

mA(xi_lvxn-i-l’x?—i—l) = Ty (3)

The operation *i A defined by equality (3) is equivalent to equality (2) is called
the i-th inverse operation to the operation A, which is also a quasigroup.
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If in (1) we replace x; with v;;z;, ; with A(z7), then we obtain

A({vijz;}iLy) = A(zY),

that is
Tz’2 = {Vi217yi227"' v 5} (4)

IR R

is am autotopy of Q(A).
If in (1) we replace x; with v;;z; then, according to (4), we obtain

{" A(2?) = A({wijz Y1)},

that is, z; with A(x7).

Therefore, le_l, Tpy1, Ty uniquely determine the element x;. We obtain a
new operation defined by the correspondence {z’ ™!, z, 1, ri o} = .

If in (1) we replace x; with v;;z;, then, according to (4), we get

{TA(}) = A({via o)},

that is, x; with A(z}). By analogy with isotopy, if A™79) = B, then B
is called an isostrophe of the n-quasigroup Q(A). equalities (1), (5) and (6)
are equivavalent. Therefore any of these can be taken as definition of n-IP-
quasigroup [1].

Note that an n-IP-quasigroup has more than one inversion matrix. It is
known [1] that the multiplication of two inversion matrices (in the sense of
multiplication of the corresponding permutations) is an autotopy matrix for
Q(A)), and the multiplication of an inversion matrix by an autotopy matrix is
an inversion matrix for an n — I P-quasigroup Q(A).

An element e € @) satisfying the equalities

A(igl,x,ngi) =z

for any x € Q and i € 1,n, is called a unit of an n-loop Q(A). It is known [1]
that, unlike a binary operation, an n-loop can have more than one unit. For an
n-1P-loop QQ(A) with unit e[1], the permutations I;; on the set () are defined by
the equalities

- i1 n—j o
A, 77 e, e”) =e

for any 4,7 € 1,n and any = € Q. If it is happened, the first constructed example
of a 3-JP-loop has the inversion matrix [J;;].

In this connection, Prof. V.D. Belousov formulated the question: find out
if among all inversion matrices of an n-IP-loop with unit e there is always
(becomes, turns into, is) the inversion matriz [J;;]?
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Theorem 1. An invertibility matriz v;; of a multiary IP-uniloop (Q; A, e)
coincides with [I;;] matriz if and only if v;j(e) = e for all i,j € 1,n.
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SUPERNILPOTENT LOOPS: FINITE
AXIOMATIZATION

Vojtéchovsky Petr
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Supernilpotence is a strenghtening of the notion of nilpotence based on
absorption properties of polynomials. For instance, the commutator [z,y] is
absorbing since it returns 1 whenever + = 1 or y = 1. It turns out that
supernilpotent groups of class k are precisely nilpotent groups of class k, but
this is not the case for general loops.

I will present a short equational basis for supernilpotent loops of class 3
in which linearizers play an important role, in addition to commutators and
associators.

I will also discuss the problem of a finite equational basis for supernilpotent
loops of class > 3; here we give up on efficiency, employ linearizers recursively
and introduce new associators that are more suitable for the inductive argument.
This is joint work with David Stanovsky.
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SUBSQUARES OF LATIN SQUARES
Wanless lan, Allsop Jack *
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A subsquare of a Latin square is any submatrix which is itself a Latin square.
Every Latin square of order n trivially has n? subsquares of order 1 and one
subsquare of order n. Any subsquare between these two extremes is proper.
Subsquares of order 2 are called intercalates. A Latin square without intercalates
is said to be N, and a Latin square without proper subsquares is said to be N..

In this talk I will survey results and open questions relating to the number of
subsquares in a Latin square. We might be trying to minimise or maximise this
number, or to understand its distribution among all Latin squares of a given
order. The existence question for N, Latin squares was settled a long time ago,
but the corresponding question for N, Latin squares has only recently been
settled. There has also been exciting progress on understanding the distribution
of subsquares among Latin squares of a given order. But some questions remain.

ALGEBRAIC PROPERTIES OF A CLASS OF POWER
ASSOCIATIVE LCC-LOOPS AND SOME ASSOCIATED
TOTAL INNER MAPPING GROUP QUESTIONS
Temitopé Jaiyéola*, Olufemi George,

Benard Osoba, Emmanuel llojide

Obafemi Awolowo University, University of Lagos, Bells University of
Technology, Federal University of Agriculture, Nigeria.

tjayeola@oauife.edu.ng, oogeorge@unilag.edu.ng,
b_osoba@bellsuniversity.edu.ng, ilojidee@funaab.edu.ng

In this paper, we investigated the algebraic properties of a class of LCC-loops
(and its dual) which is power associative, tagged ‘twist’ of LWPC (RWPC) viz.
LTWC (RTWC). Its relationship with Frute and crazy loop was discovered.
LTWC-loop was shown to be a class of loop which falls into the Syrbu and
Grecu (2019) first answer to a question of Stanovsky and Vojtéchovsky (2014)-
minimal generating set for the total inner mapping group of a loop. In addition,
we showed that the class of LTWC-loop also provides an alternative solution
to 2014 question and in fact, the inner automorphism group of a LTWC-loop

*Speaking author: Wanless 1.
*Speaking author: T.G. Jaiyéold
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is generated by just one inner mapping. Generalized forms of the left (right)
alternative property and flexibility property were introduced and studied in
this class of loop. We also explore the properties of the left and right translation
of this class of loop and proved some results useful for the construction a finite
loop belonging to this same class.

The LWPC and the RWPC loops were introduced by Phillips in [5]. George
et al. [1] showed that each of these two loop identities described by

(zy-x) -zz=2x((yx - x)2) (LWPC)
zx - (x-yzx) = (2(z - zy))x (RWPC)

is power associative. They established that the following equations of identities
are true in loops

(LWPC) = (LCC) + (Py) and (RWPC) = (RCC) + (P,), where
(zy - 2)z = x(yz - o) z(z - yz) = (z - 7y)T

(. /
-~

Py P,

George and Jaiyéold [2] investigated two identities (Q12 and Q7 ) similar to
LWPC and RWPC. These identities may be seen as ‘twist’ of LWPC and RWPC,
a possible name for them might be LTWC and RTWC.

r((x-yx)z) = (x - xy) - x2 (LTWC)
(y(zz - x))x =yx - (22 - x) (RTWC)

Similarly, they showed that the following equations of identities are true in loops
(LTWC) = (LCC) + (P,) and (RTWC) = (RCC) + (P).

Likewise, since the equation of identities (LWPC)-+(RWPC) = (CC) + (WIP)
is true in loops, so also is (LTWC)+(RTWC) = (CC) + (WIP).

The purpose of this work is to introduce and study generalized forms of the
left (right) alternative property and flexibility properties in LTWC-loop and to
show that the inner automorphism group of a LTWC-loop is generated by just
one inner mapping.

In this work, we shall show that LTWC-loop is a class of loop which falls
into the Syrbu and Grecu’s first answer to Question 1.2. In addition, the class
of LTWC-loop also provides an alternative solution to Question 1.2. in fact,
the inner automorphism group of a LTWC-loop is generated by just one inner
mapping.

In a LTWC (RTWC)-loop, the following are equivalent:

1. Flexibility.
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2. RAP (LAP).
3. RIP (LIP).

Hence, any LTWC (RTWC)-loop which obeys any of them is an extra loop. Any
LTWC (RTWC)-loop is a Moufang loop if and only if it is an extra loop. In a
LTWC-loop G, N,,(G) = Nx(G). While in a RTWC-loop G, N, (G) = N,(G).

These observations necessitate the introduction of the properties in Definition 1
for investigation in addition to the fact that it was shown in [3] that a LTWC-
loop is power associative.

Definition 1. A power associative loop G is said to obey

1. LAP, -property if x - 2"y = 2"y where n € Z, ¥ z,y € G.
LAP"-property if " - xy = 2" 1y where n € Z, V =,y € G.
FLEX"-property if x™ - yx = 2™y - x wheren € Z, ¥ x,y € G.
FLEX,, -property if x - yx™ = zy - 2" where n € Z, ¥V x,y € G.
FLEX (3 p41)-property if 22y - 2™ = 2% - yz"™ wheren € Z, V x,y € G.
RAP"-property if yr - 2™ = yz"*! wheren € Z, ¥ z,y € G.

NS S e

RAP, -property if yz™ - x = yz" ! wheren € Z, ¥ z,y € G.

Remark 1. In any power associative loop: LIP is equivalent to the property
LAP™ or LAP_; RIP is equivalent to the property RAP™" or RAP_4,

Theorem 1. Let G be a LTWC (RTWC)-loop. G is a Frute loop if and only if
G is a crazy loop.

Remark 2. Theorem 1(1) is nontrivial because by (Theorem 2.6 (2) of [4]), in
a Frute loop, the property x~lyx = xyx~! (which is equivalent to the centrum
square property in a diassociative loop) is satisfied but not generally true in
Moufang, extra loop or group. Hence, it distinguishes a Frute loop from a Moufang,
extra loop and group. In (Theorem 2.2 of [4]), this property is necessary and
suffictency for a group to be a Frute loop and vice versa. But may not be
necessary and sufficiency for a Frute loop to be a crazy loop (which is a group
and has the property itself).

Theorem 2. Let G be a LTWC-loop.
1. x-2"y=2a" -xyVe,y € G, n € Z.

2. G is left power alternative < G has the LAP,, -property for alln € 7 < G
has the LAP" -property for alln € Z.
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3. For any fixed n € 7Z, G has the LAP"-property < G has the LAP, -
property.

4. G has the FLEX,,, LAP" and FLEX 3 ,,41) properties implies that G has
the RAP"™ property for any fived n € Z\{1}.

5. For any fited n € Z, the LPA™"! and LPA™ properties imply the LAP"
and LAP,, properties.

6. Left power alternative property implies the LAP" and LAP,, properties for
all n € Z.

7. LAP" or LAP, and LPA"™ properties imply the LPA™" property for any
fixed n € Z.

We shall be discussing some properties of translations of LTWC-loop and
their application.

Theorem 3. In a LTWC loop (G,-) and for each x,y € G:
1. R™ = L2"R™L 2" or [R™, L") = I for any m,n € Z.
2. Ryn = LT 2(R,Ly)*L" 2 for any n € Z.
8. Ryn =T 1R, L™ for any n € Z.

4. R(a:,y) = T(x’y)LQ?leLx = T(x7y)Tgc_1 where Sx = R;le and T(:c,y) =
RwRnglel are elements of Inn(G). Inn(G) = <T(x7y) | z,y € G> and
TInn(G, ) = <T(x7y),L($,y), M(%y), Ua_’; | X,y € G> =
(Tw)s Lizy)s Play): Ve | 7,y € G).

Remark 3. By Theorem 3(4), LTWC-loop is thus a class of loop which falls
into the Syrbu and Grecu (2019) first answer to a question of Stanovsky and
Vojtéchovskyj (2014 )-minimal generating set for the total inner mapping group of
a loop. In addition, the class of LTWC-loop also provides an alternative solution
to 2014 question and in fact, the inner automorphism group of a LTWC-loop is
generated by just one inner mapping.

Remark 4. We have established necessary and sufficient condition for a LTWC-
loop to have LAP (RAP) or to be left (right) power alternative.

Remark 5. A LTWC-loop G is commutative if and only if v - yxr = yx? or
z[r- (- yz)r] = (z-xy)z> for all x,y € G.

We shall be using some of the properties of the translations of LTWC-loop
for construction. We adopt the following notations for such in a loop (G, -):

[1,(G,-) =11,(G) ={Ra | a € G} = {R(a) | a € G} and [[,(G,-) = [\(G) =
{Ls | a e G} ={L(a)]|acG}.

54



0~ O U W -
00 =1 O U i LN |-
O 0 UL~ WA H NN
U0 DN O WW
GO ~1 0 — N o |
B DD W 0o O~ Ut ot
N H W~ Ot o OO
O = o O 00 Ut | =]
— W N B Ot =1 O o 0o

Tabmuma 1: A LTWC-loop (G, ) of order 8

Theorem 4. Let G be a loop.

1. G is a LTWC-loop if and only if for all a € Hp, for some B € ],
and for some o’ €[], —2a'Baf € I1,-

2. If G s a LTWC-loop, then

(a) 8,8 €]\ = 87188 €],
(b) for some a € [ and 8 € [],, Ba® = a®p.
(¢) for some a € [[, and B €[], a? (6&_1)71—2 (Ba)2 a" 2% ¢ [1, for

alln € 7.

(d) for some a € [], and B € ][, (504_1)n_1 Ba™t € [I, for all
n € 2.

(e) for some o € [ and B €[], Bmam = a?" B Y m,n € Z.
(f) for some B,B" € [],, B8 = B'B.

(9) {_0[7" alla € Hp, for some B € [],, and for some o’ € Hp, o/ B tap e
N
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